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RADIOFFXQUENCY POWER TRANSFlER TO ION-CYCLOTRON WAVES 

I N  A COLLISION-FREE M.A.GNETOPLASMA 

by Donald R. Sigman 

Lewis Research Center 

SUMMARY 

With the  Fourier i n t eg ra l  theory developed by T. H. St ix ,  calculations 
were made on power t ransfer  from a radiofrequency c o i l  t o  an ion-cyclotron wave 
i n  a cold co l l i s ion less  cy l ind r i ca l  plasma. The e f f ec t s  of varying parameters 
such as s t a t i c  magnetic f i e l d ,  e lectron density, radiofrequency, plasma and c o i l  
radius,  and wavelength a r e  discussed. It is shown t h a t  there  is  an optimum 
radiofrequency c o i l  wavelength for maximum power t ransfer ,  and curves a re  pre- 
sented t o  f a c i l i t a t e  the se lec t ion  of t h i s  wavelength. The importance of 
placing the radiofrequency c o i l  as close t o  the plasma as possible i s  a l s o  
shown. Finally,  a comparison is made between calculat ions from the  above men- 
tioned Fourier i n t eg ra l  theory and a former Fourier-Bessel s e r i e s  theory ( a l so .  
developed by S t i x ) .  The two theories  a r e  not found t o  be i n  agreement. 

INTRODUCTION 

The generation of ion-cyclotron waves i n  a plasma column is of i n t e r e s t  t o  
experimentalists concerned with the  heating of plasma through co l l i s ion less  
processes. This repor t  contains calculations from a theore t ica l  plasma model 
of the  e f f e c t  of various plasma parameters on the power t ransferred from a 
radiofrequency c o i l  t o  the ion-cyclotron wave i n  the plasma. In t h i s  model, t he  
radiofrequency coil. i s  of f i n i t e  length, and it i s  wrapped around an i n f i n i t e l y  
long plasma column surrounded by a vacuum and immersed i n  a steady uniform 
magnetic f i e l d  p a r a l l e l  t o  the ax i s  of the column. The assumption tha t  the 
plasma is  of constant density, cold, and co l l i s ion  f r e e  is  made i n  the  model. 

In  the region underneath the co i l ,  power is  t ransferred from the radio- 
frequency c o i l  t o  the  ion-cyclotron wave. This wave then propagates unattenu- 
a ted  out both ends of the c o i l  and down the plasma column. Since the  plasma 
model is cold, a l l  energy from the  c o i l  shows up as electromagnetic energy of 
the  wave. 

By using the previous physical model and assuming, i n  addition, t h a t  the  
electron has zero mass, T. H. S t i x  (ref.  1) derived expressions f o r  the power 
t ransferred t o  ion-cyclotron waves. 



Stix,  by using a Fourier integral ,  represented the current sheet dis t r ibu-  
t ion  i n  the f i n i t e  length c o i l  by an i n f i n i t e  s e r i e s  of current sheets, each 
in f in i t e ly  long. The wavelengths of these current sheets ranged from zero t o  
inf in i ty ,  and the r e l a t ive  strength of each current sheet was determined by the 
Fourier integral .  Since the e l ec t r i c  f i e l d s  associated with each of these in- 
f i n i t e l y  long current sheets can be eas i ly  calculated, it was then possible t o  
ge t  an expression f o r  the f i e l d  of the f i n i t e  length c o i l  by superposing the 
f i e lds  of a l l  the i n f i n i t e l y  long current sheets. This technique resul ted i n  
an in tegra l  fo r  the e l e c t r i c  f i e l d  of the f i n i t e  length co i l .  This in t eg ra l  
was solved by using contour integration t o  a r r ive  a t  the f i n a l  expressions fo r  
both the r e a l  and imaginary par t s  of the f i e l d  ( i . e . ,  those par t s  of the f i e l d  
i n  phase with and 90' out of phase with the current i n  the current sheet) .  The 
power transferred t o  the wave was then computed by averaging over the length of 
the c o i l  the product of the current i n  the f i n i t e  current sheet and the r e a l  
pa r t  of the e l e c t r i c  f i e l d  a t  the current sheet. 

S t ix  formerly used another technique that employed a Fourier se r ies  t o  cal-  
culate  power t ransfer  t o  the ion-cyclotron wave ( r e f .  2 ) .  
r e su l t s  of t h i s  former technique with those of the.Fourier in tegra l  technique 
is  given i n  the appendix. 

A comparison of the 

In  t h i s  report ,  the r e su l t s  of d i g i t a l  computer calculations from the ex- 
pressions derived i n  reference 1 are  presented. 
plasma parameters on power t ransfer  were studied: plasma wavelength, plasma 
mode, radiofrequency c o i l  radius and length, and magnetic f i e l d .  An attempt 
has been made t o  present the r e su l t s  of the calculations i n  such a way t h a t  
they a re  an a i d  t o  an experimentalist both i n  designing an e f f i c i en t  means f o r  
power t ransfer  from a radiofrequency c o i l  t o  the plasma wave and i n  interpret-  
ing the data. 

The e f fec ts  of the following 
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SYMBOLS 

The cgs-gaussian uni t s  a re  used throughout. 

length of one-half of radiofrequency excit ing c o i l  

magnetic f i e l d  strength 

magnetic f i e l d  a t  ion-cyclotron pa r t i c l e  resonance 

veloci ty  of l i g h t  

see eq. (4b) 

8 component of vacuum e lec t r i c  f i e l d ,  see eq. (4a) 

electronic charge 

radiofrequency c o i l  radius correction fac tor  

defined by eq. (12b)  
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modified Bessel function of first kind 

Bessel function of f i r s t  kind 

magnitude of radiofrequency c o i l  current  

radiofrequency c o i l  current per u n i t  length 

modified Bessel function of second kind 

a x i a l  wave propagation constant (wave no.) i n  plasma 

see eqs. ( 8 )  and ( 9 )  

axial radiofrequency c o i l  current  propagation constant (wave no.) 

mass of hydrogen ion 

electron density 

t o t a l  power t ransferred t o  ion-cyclotron waves from radiofrequency c o i l  

r e l a t i v e  power t ransfer  (2fia2 j;P* = P~ 

plasma radius  

r e l a t i v e  power t ransfer  factor ,  see eq. (6d)  

r a d i a l  cy l indr ica l  coordinate 

shape fac tor  fo r  imaginary power t ransfer ,  see eq. (6a)  

shape fac tor  f o r  r e a l  power t ransfer ,  see eq. (6b) 

radiofrequency c o i l  radius 

time 

a x i a l  cy l indr ica l  coordinate 

z a ( k 0 ~  - kn) 

azimuthal cy l ind r i ca l  coordinate 

r a d i a l  wave number 

ion plasma frequency 

radiofrequency/Zn 
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THEORY 

The axis  of the plasma cylinder i s  designated the z-axis and cyl indrical  
coordinates a re  used. 
The excit ing radiofrequency c o i l  fo r  the system has a length 2a, surrounds the 
plasma cylinder, and is centered a t  
r en t  per un i t  length i n  the c o i l  i s  t o  be represented by the following Fourier 

The steady magnetic f i e l d  i s  directed along t h i s  z-axis. 

z = 0 (see  f i g .  1). The aximuthal cur- 

se r ies  : 

00 

i( kO2z-at)  
j* = C jze - a < z < a  - 

2 =1 

O b )  PI > a  j* = 0 

In  order t o  represent a f i n i t e  length c o i l  i n  a single equation, S t ix  fur -  
ther decomposed each Fourier current component i n  equation (1) into  i ts  Fourier 
i n t eg ra l  spectrum so  t h a t  

co m 
j* = j ,e s in (k  - kOZ)a  , i (kz-a t )  & 

(2) = 232 a ( k  - ko2)  
i( k02-at) 

2 =1 2 =1 

This led  t o  the following expression fo r  the e l e c t r i c  f i e l d  
of the co i l :  

E8 a t  the radius 

where 

is the 8 component of the vacuum e l e c t r i c  f i e l d  a t  r = s when 

the c o i l  i s  assumed t o  be in f in i t e ly  long and t o  have a current d i s t r ibu t ion  
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per u n i t  length jzei(kz-cot). 
derive the following expression for the  power t ransferred t o  the nth na tura l  
mode of the plasma wave when a l l  the 

By working *om equation ( 3 ) ,  St ix  w a s  able t o  

jz's have been assumed zero except one: 

The r e a l  p a r t  of Pz corresponds t o  r e s i s t i v e  plasma loading, which i s  the 
power t ransfer red  t o  the plasma wave as measured i n  the laboratory. Thus, 

( 7 )  
2.2 Re Pz = 2xa J~RS,(V) 

The na tu ra l  modes a re  determined by finding the conditions under which E6 
This i n  the plasma under t h e  i n f i n i t e l y  long c o i l  remains nonzero when j* = 0. 

condition i s  met when the  denominator of equation (4b)  i s  zero: 

The dispersion r e l a t ion  f o r  ion-cyclotron waves i n  the plasma i s  given by 
equations ( 5 )  t o  ( 9 )  i n  reference 1: 

2 2  

2 
v c  - =  
TrT 

( 9 )  

The simultaneous solut ion of equations (8 )  and ( 9 )  gives the values 
and kn f o r  the nth na tu ra l  mode of the plasma. These values were then used 
i n  equation (6d) t o  compute R on the 7094 d i g i t a l  computer. A t  k = h, both 
numerator and denominator of equation (6d)  a re  zero. This indeterminancy is 
eliminated i n  the  calculat ions through use of 1 'Hospi ta l ' s  ru l e  with respect 
t o  k .  

vn 
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DISCUSSION OF RESULTS 

For the  purpose of the  discussion t h a t  follows, it should be noted t h a t  
the equation for power t ransfer  (eq. ( 7 ) )  contains three terms of i n t e re s t :  
2xa2jz ,  R, and Sr(v) .  The function Sr(q) ,  which is  ca l l ed  the "shape factor"  
by Stix,  is the  only t e r m  which contains koz, and it i s  a maximum when 
k0Z = kn (see f i g .  2 ) .  The t e r m  R is a function of knj s, p, ne, and Cl, 
but  not kbz. Thus, the maximuin RSr(7) product i s  achieved by se lec t ing  k0Z 
equal t o  the  value of kn for which R is  a maximum, s ince under this condi- 
t i o n  both R and S r ( v ) . a r e  maximum. 

I n  the  following sections,  the  e f fec ts  of s t a t i c  magnetic f ie ld ,  wavelength 
and radi i  of the plasma and radiofrequency c o i l ,  and plasma density on radio- 
frequency power t ransfer  a r e  discussed. 
primary mode a r e  compared t o  the primary mode, and calculat ions are made with 
nonsinusoidal radiofrequency c o i l  current d i s t r ibu t ions  as well as with sinus - 
oida l  d i s t r ibu t ions .  
t ravel ing wave current sheet i n  the  'tz direct ion.  
following sections a r e  the same i f  the current sheet  i s  assumed t o  t r a v e l  i n  
the  -z direct ion.  Thus, i f  one wishes r e s u l t s  f o r  a standing wave current  
sheet, he may t o  a good approximation simply add the contributions from the 
posi t ive and the negative z-directed waves. In  doing t h i s ,  the cross terms, 
which a r e  very small, a r e  neglected. 

A l s o ,  plasma modes other than the 

I n  equation (l), it i s  s t a t ed  t h a t  the current sheet is a 
The r e s u l t s  presented i n  the 

Different Plasma Modes 

The simultaneous solut ion of equations (8)  and ( 9 )  gives an i n f i n i t e  
Vn, and f o r  each value of there  i s  a contribution t o  

However, it w a s  found numerically t h a t  only the contribution 
number of values f o r  
power absorption. 
fo r  the mode with the  lowest value of Vn w a s  of significance.  In  a l l  cases 
studied, the  contribution of the lowest mode w a s  more than ten times t h a t  of 
the  next highest  mode; the shapes of the  curves presented a re  not affected by 
inclusion of the higher modes. Thus, a l l  curves shown i n  t h i s  report  a r e  from 
lowest order mode calculations ( i . e . ,  n = 1). 

Vn 

Magnetic Field 

The dependence of R on the magnetic f i e l d  f o r  a,typical laboratory 
plasma is  shown i n  f igure  3. 
R i s  given i n  figure 4. 
k01 = 0.140 per centimeter, a = 2n/k01, ne = 5XlOl-1 per cubic centimeter, 
plasma radius = 2.5 centimeters, c o i l  radius  = 7.5 centimeters, and 
cu = 2xX6.5X106 per second (Bo = 4200 G )  . 
i n  f igure 4 is very much l i k e  a p l o t  of 
f i g .  4 ) .  However, the  r e l a t i v e  power absorption curve has a narrower ha l f -  
width, and the magnetic f i e l d  a t  maximum power absorption is l e s s  than the  
magnetic f i e l d  a t  the  peak i n  the S r ( v )  against  R p l o t  ( i .e . ,  where 7 = 0) .  

Relative power absorption (P" = R S r ( v ) )  against  
In t h i s  s i tua t ion ,  j l  = 1 ( a l l  other j z  = 0), 

The r e l a t i v e  power absorption curve 
Sr(q) against  52 ( a l s o  presented i n  

Even though the  calculations f o r  f igures  3 and 4 have been made by using 
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spec i f ic  values of t he  parameters cu, s, p, k01, and ne, the  basic shape of 
these curves i s  preserved f o r  other values of the parameters. Different values 
of cu, s, or p a f f ec t  the  magnitude of R f o r  a given R; ne la rge ly  deter-  
mines the value of 51 where R is  a maximum ( Q  decreases as ne increases) .  
Different values of k01 move the  peak of S r ( 7 )  with respect t o  R.  

I n  the derivation fo r  R (eq.  (sa)) ,  the displacement current term from 
Maxwell's equations w a s  neglected. 
veloci ty  cu/k 
displacement current may be included by replacing k i n  the  expression f o r  R 

by k2 - [(cu2/c2)f/". For EQ = 75  kilogauss (a = 2rcx1.l6x1O8 sec - l )  and 
k = 0.15 per centimeter, (cu/k)' = 0.24XlOZ0 = 0.26 c2; therefore,  the curve 
against  R is not changed from t h a t  of f igure  4 where Bo = 4.2 kilogauss. 

For la rge  magnetic f i e l d s  (when the phase 
is no longer negl igibly small compared t o  the  veloci ty  of l i g h t ) ,  

P* 

Plasma Wavelength and Radiofrequency Coil  Length 

I n  studying the e f f ec t s  of c o i l  length on plasma power absorption, two 
cases a r e  considered. For case A, the  physical length 2a of the c o i l  is held 
constant, and the value of i n  the pr inc ipa l  Fourier component of the cur- 
r en t  d i s t r ibu t ion  as given by equation ( l a )  i s  varied. I n  case B, t he  physical  
length of the coil. i s  varied but phased f o r  two wavelengths s o  t ha t  a = 2fl/ko1. 

k01 

Figures 5 ( a )  t o  ( d )  show R against  kn f o r  case A f o r  a range of the  
var iables  p and ne with s held constant. From these curves, it i s  seen 
tha t  there  is  a value of kn which makes R a maximum. This point of maximum 
R, however, occurs a t  d i f f e ren t  values of kn f o r  d i f f e ren t  values of p, ne, 
and s .  For la rger  values of s, the peak w a s  found t o  occur a t  smaller values 
of kn such tha t  when ne i s  held constant the  product knS a t  the  peak is  a 
constant. The posi t ion of the  peak is l e s s  sens i t ive  t o  changes i n  p. For 
high dens i t ies  (ne > loL2 
it does not vary s igni f icant ly  with density f o r  

the  peak occurs a t  l a rge r  values of q, but 
ne < 1012 per cubic centimeter. 

2 . 2  For case B, P = %a J l R S r (  74 and a = 2fl/ko1. When k01 = kn ( i . e . ,  when 
Sr (g )  i s  a maximumj, then PI - a R = 4fi 2 2  /kn R.  Figures 6 ( a )  t o  ( d )  show 
R/k, as a function of k, f o r  a range of the var iables  p and ne with s 
again s e t  equal t o  10 centimeters. Again there  are maxima i n  the  curves, which 
indicate  a point of maximum power t ransfer .  The dividing of R by moves 
the peak t o  lower kn values (compare f ig s .  6 ( a )  and ( b ) ) .  Qual i ta t ively,  the 
e f f ec t s  of s ,  p, and ne on the maximum power points a r e  the same f o r  case B 
as f o r  case A. 

Since f igures  5 and 6 are f o r  a f ixed value of s = 10 centimeters, a cor- 
rec t ion  fac tor  is needed if the  curves are t o  be usefu l  fo r  other values of s. 
We therefore  define a function 
entire dependence of power on s. This function is p lo t t ed  i n  f igure 7 f o r  a 
range of s values. Corrections t o  the values i n  figures 5 and 6 f o r  values 
of s # 10 may be made by multiplying by the correct ion f ac to r  F(Qs)/F(lOQ). 

F(kns) = [knSKl(knS)12, which contains the 

All the curves i n  f igures  5 and 6 a re  p lo t ted  with kn as the abscissa.  
This is a useful  form f o r  designing an experiment. For interpret ing data, 
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however, a more usefu l  variable i s  S l ,  which i s  defined by 

2 
1 

n2 kEc 
-1+- - -  

Equation (10) permits the  evaluation of 
KI and R. 

kn. i n  terms of measurable quant i t ies  

Plasma Density 

Figure 8 shows the e f f ec t s  of varying the density on .power adsorption. 
w a s  set a t  a f ixed  value (0.140 cm-1) and For curve (a) ,  the  value of 

"peak" r e l a t i v e  power transfe?tP* a t  kn = ko) was  plot ted.  For curve (b) ,  
the  value of k01 w a s  adjusted f o r  each density s o  t h a t  k01 w a s  equal t o  the  
value of kn which gave a maximum i n  the R against  kn curve ( f i g .  5( a )  ) . 
For curve ( c ) ,  the  value of k01 w a s  adjusted t o  the value of kn which gave 
a maximum i n  the  R / g  against  Q curve ( f i g .  6(  a )  ) . 

< ne < 5x1012 per cubic centimeter power absorption i s  a weak function o f  den- 
s i t y ,  but  it drops off rapidly i f  an attempt i s  made t o  go t o  higher densi t ies .  

9 The conclusion is  t h a t  over the density range 3x10 per cubic centimeter 

Figure 9 shows the values of R fo r  "peak" r e l a t i v e  power absorption 
against  density when k01 = 0.140 per centimeter. 

Plasma and Radiofrequency Coil  Radius 

Figure 10 shows t h e  e f fec t  o f  plasma and c o i l  radius on "peak" r e l a t i v e  
power absorption by the plasma. It i s  seen t h a t  when the  radiofrequency c o i l  
radius s i s  held constant, power absorption rises f a s t e r  than ( P / s ) ~ .  This 
emphasizes the importance of operating with the  radius r a t i o  a s  near t o  
1 as physically possible. 

p/s 

Other Fourier Current Components 

Because the current  d i s t r ibu t ion  of a r e a l  laboratory c o i l  cannot r e a l i s -  
t i c a l l y  be represented as a s ingle  s ine wave, it is of i n t e r e s t  t o  compute the  
contribution t o  power absorption from Fourier components of the c o i l  current  
other than the pr inc ipa l  component. For an i l l u s t r a t i v e  calculat ion it is 
assumed t h a t  

j* = j(O.151 ei4kOlz 3. 0.422 eiZkOlz + 0.270 eikolz) 

j* = 0 z > a  ( I l b  1 
where a = 2d2k01, k01 = 0.070 per centimeter, = 5x1011 per cubic centimeter, 
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s/p = 3 and w = 2nX6.5xL06 per second. This current d i s t r ibu t ion  represents 
t he  three major Fourier components of t he  current p ro f i l e  shown i n  the  inset  of 
f igure  l l ( a ) .  This prof i le  i s  the  same as t h a t  i n  the  ion-cyclotron resonance 
apparatus presently being used at the  NclsA Lewis  Research Center. 
wave number for t h i s  d i s t r ibu t ion  i s  2k01 = 0.140 per  centimeter, where 2ko1 
i s  approximately equal t o  the  value of R/kg 
against  & curve ( f i g .  5 ( b ) ) .  It is now in te res t ing  t o  examine the  contribu- 
t ions  t o  r e l a t i v e  power absorption caused by the presence of the other Fourier 
components i n  the current  d i s t r ibu t ion .  
(R against  &) t h a t  when k, = 4k01 R is la rger  than when k, = 2kO1 ( t h e  
pr inc ipa l  wave number). Power transfer, however, i s  a l s o  proportional t o  the 
magnitude of the current squared; therefore, the contribution t o  power t ransfer  
from the 
= 0.128. This reduces the  e f f e c t  of the  short  wavelength component. The con- 
t r i bu t ion  from the  long wavelength component (koz = k01) i s  a l so  s m a l l  because 
R f o r  kn = k01 is  smaller than R f o r  kn = 2k01. The current weikhting 
fac tor  (0.270/0.422)2 = 0.630 fu r the r  reduces the contribution from the  long 
wavelength component. Figure l l ( a )  shows r e l a t i v e  power absorption when the  
e f f ec t s  of a l l  three major Fourier components a r e  included. It is seen t h a t  
t h i s  curve i s  not d ra s t i ca l ly  d i f fe ren t  from the curve i n  f igure  4 where there  
w a s  only one Fourier component. 

The pr inc ipa l  

which gives a maximum i n  the  

It can be seen i n  figure 5 ( a )  

k0Z = 4k01 Fourier component must be multiplied by (0.151/0.422)2 

Another current d i s t r ibu t ion  which may be examined i s  the  rectangular wave 
d i s t r ibu t ion  shown i n  the  i n s e t  of f igure l l ( b ) :  

eikOIZ + 0.54 ei3kOlz + . . z < a  - 

The pr inc ipa l  Fourier wave number components f o r  t h i s  d i s t r ibu t ion  a re  
k01 = 0.140 per centimeter and 
for kn = k01 is  less than R f o r  kn = 3k01, but the  current weighting fac tor  
( 0.54/1)2 = 0.292 reduces the contribution from the short  wavelength component. 
Contributions from other wavelength components a r e  completely negl igible  f o r  
t h i s  rectangular wave d is t r ibu t ion .  
t i o n  fo r  t h i s  d i s t r ibu t ion .  

3k01 = 0.420 per centimeter. H e r e  again, R 

Figure 12(b)  shows r e l a t ive  power absorp- 

CONCLUDING REMARKS 

Computer calculat ions based on the S t i x  equations ( r e f .  1) f o r  power t rans-  
f e r  t o  ion-cyclotron waves i n  a cold co l l i s ion less  uniform plasma immersed i n  
an a x i a l  magnetic f i e l d  and excited by a radiofrequency c o i l  show t h a t  radio- 
frequency power t ransfer  b the  plasma waves is  r e l a t i v e l y  independent of den- 
s i t y  ( f o r  ne < 5X1Ol2 cm-%) and increases approximately as the fourth power of 
the plasma radius.  It has a l s o  been found t h a t  f o r  any s e t  of the  parameters 
p, s ,  and ne an optimum radiofrequency c o i l  wavelength ex i s t s  for  maximum 
power transfer. The e f f e c t  of displacement current  f o r  hydrogen plasmas with 
Bo < 100,000 gauss has been shown t o  be very small. Also, the lowest order mode 
of o sc i l l a t ion  of the plasma w a s  found to  contribute about 90 percent of the 
power t ransfer red  t o  the  ion-cyclotron waves and t o  determine the basic shape of 
a l l  the  curves. Finally,  it should be pointed out  t h a t  the app l i cab i l i t y  of the 
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r e s u l t s  presented i n  t h i s  report  t o  a par t icu lar  laboratory plasma depends on 
how well  the laboratory plasma is  represented by the  model upon which the cal- 
culations were based. 

L e w i s  Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, December 14, 1965. 
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APPENDIX - COMPARISON O F  FOURIER INTEGRAL THEORY W I T H  

W I T H  FOUREZR-BESSEL THEORY 

t h i s  
have 

Reference 2 gives the  d e t a i l s  of a technique employed by S t i x  p r io r  t o  t h a t  

report .  To es tab l i sh  the difference between the two methods, calculations 
of reference 1 f o r  calculat ing power absorbed by the plasma model discussed i n  

been made f o r  the  following plasma using both techniques: 

- 5X1On cm-3 

s = 7.5 cm 

p = 7.5 cm 

LU = 27cX6.5X106 sec - l  

k01 = 0.140 cm-l 

ne - 

Results a r e  compared i n  f igure  12 .  For the reference 2 technique, 

S t i x ' s  equations ( r e f .  2 )  contain absolute value signs on P", but the deriva- 
t i on  of equation (13a) has been followed through careful ly ,  and there  appears 
t o  be no mathematical reason for inclusion of the  absolute value signs. 
If the  absolute signs a r e  omitted i n  equation (13a), there  i s  a value of 
(see f i g .  1 2 )  above which the power absorbed by the plasma f r o m  the c o i l  is 
negative (Rcr i t  
t o  zero with 
technique of reference 2 a t  t h i s  point. Below Rcr i t  the  r e s u l t s  of the two 
calculations are i n  agreement a t  only one value of R. This is the  value of R 

length c o i l  ? fo r  0 < r < p )  w a s  represented as a Fourier-Bessel s e r i e s  of non- 
fo r  which 

orthogonal (but  nearly orthogonal) functions. 
orthogonal i n  t h i s  range, the coef f ic ien ts  of the  se r i e s  can be c a l c u k t e d  i n  
closed form. This i s  the  technique used by S t i x  i n  deriving equation (13a). 
It w a s  thought t h a t  t h i s  assumption of orthogonality might lead t o  peculiar- 
i t i e s  i n  the calculations f o r  r e l a t i v e  power absorbed. However, Woollett 
( r e f .  3) has correc t ly  calculated the  coeff ic ients  f o r  the Bessel s e r i e s  and 
has found them t o  agree with the  S t i x  coeff ic ients  t o  within a few percent. 
Thus, the nonorthogonality does not explain the difference between the refer- 
ence 1 and reference 2 techniques. However, the conditions f o r  the  two models 
a re  s l i g h t l y  d i f fe ren t .  I n  reference 2 it w a s  necessary t o  assume t h a t  the 
e l e c t r i c  f i e l d  w a s  zero a t  the l e f t  end of the c o i l  when a r i g h t  running wave 
w a s  assumed f o r  the current  sheet.  This assumption eliminates a p r i o r i  the  

Rcr i t  

i s  determined by s e t t i n g  the denominator of equation ( 9 )  equal 
k = k01). Thus, there i s  a breakdown i n  the usefulness of the 

= k01. In  reference 2, the  e l e c t r i c  f i e l d  under the f i n i t e  

If t h e  functions are assumed 
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poss ib i l i t y  of a l e f t  running wave i n  the plasma. In reference 1 no assumption 
w a s  necessary on the e l e c t r i c  f i e l d  a t  the ends of the co i l .  I n  t h i s  case, the 
calculations show t h a t  a l e f t  running wave ex is t s  i n  the plasma. This wave is 
explained as  a re f lec ted  wave caused by a mismatch between the na tura l  modes of 
the plasma and the excit ing current sheet. When k01 = kn, the magnitude of 
the l e f t  running wave from reference 1 is zero. This is exactly the point a t  
which the calculation on the two models agree. A t  k01 = kn, the e l e c t r i c  
f i e l d  i s  zero a t  the l e f t  end of the c o i l  i n  reference 1 a s  wel l  as i n  re fer -  
ence 2.  

The technique of reference l h a s  two other d i s t i n c t  advantages: 
it i s  not necessary t o  assume s = p a s  i n  reference 2,  and second, the 
technique of reference 1 can be eas i ly  applied t o  a plasma with a r a d i a l  varia- 
t ion  i n  density by using numerical integration. 
considerably more d i f f i c u l t  t o  apply t o  a variable density plasma. 

F i r s t ,  

The reference 2 technique is 
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Figure 1. - Plasma column and radiofrequency coil configuration. 
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Figure 3. - Power factor R against R. Electron density, ne 5 ~ 1 0 ~ '  per cubic 
centimeter; plasma radius, 2.5 centimeters; radiofrequency coil radius, 
7.5 centimeters. 

e f i  

.95 .94 
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axial radiofrequency coil cur ren t  propagation constant, 0.140 per 
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R = 0/RI 

Figure 12. - Absolute value of relative paver (Pol as funct ion of R from 
both references 1 and 2. Plasma radius, 7.5 centimeters; radiofre- 
quency coil cu r ren t  propagation constant, 0.140 per centimeter. 
(Method of ref. 2 gives negative P* for R >  qrit 1 
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